IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 6, DECEMBER 1995

683

Delay Guarantee of Virtual Clock Server

Geoffrey G. Xie and Simon S. Lam, Fellow, IEEE

Abstract—We present and prove a delay guarantee for the
Virtual Clock service discipline. The guarantee has several de-
sirable properties, including the following firewall property: The
guarantee to a flow is unaffected by the behavior of other flows
sharing the same server. There is no assumption that sources are
flow controlled or well behaved. In this paper, we first introduce
and define the concept of an active flow. The delay guarantee is
then formally stated as a theorem. We show how to obtain delay
bounds from the delay guarantee of a single server for different
specifications. Derivations of end-to-end delay bounds for various
networks and source specifications are presented elsewhere.

Index Terms— Virtual clock, rate-based service discipline,
priority queue, throughput guarantee, delay guarantee, packet
switching,

1. INTRODUCTION

N A PACKET switching network, each communication

channel is statistically shared among many traffic flows that
belong to different end-to-end sessions. Typically, packets are
queued and scheduled for transmission on a first come, first
served (FCFS) basis. The service received by a particular flow
is necessarily impacted by the behavior of other traffic flows
that share the same queue. For this reason, it is very difficult
for packet switching networks that employ FCFS scheduling
to offer the following kinds of guarantees: 1) a session gets a
specified throughput rate, 2) end-to-end delays of packets in
the session are bounded, and 3) the maximum difference over
a set of delays (jitter) is bounded.

Such throughput, delay, and jitter guarantees, however,
are precisely the ones needed to support various multimedia
applications. To provide some or all of these guarantees
without giving up the flexibility of statistical multiplexing, a
variety of rate-based service disciplines have been proposed
to be used instead of FCFS [13].

In particular, the Virtual Clock service discipline [14], [15],
inspired by time division multiplexing (TDM), provides fire-
walls between individual traffic flows in the following sense:
Each traffic flow is allocated a reserved rate of throughput,
and such throughput guarantee is independent of the bebavior
of other traffic flows sharing the same server. Specifically, an
aggressive traffic source, one that generates traffic at a rate
higher than its reserved rate, may take up idle server capacity,
but it cannot affect the throughput rates guaranteed to other
flows.

Manuscript received November 9, 1994; revised May 30, 1995; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor L. Zhang. Research

supported in part by National Science Foundation Grants NCR-9004464
and NCR-9506048, and in part by the NSA INFOSEC University Research
Program. This paper was presented at the 9th IEEE Workshop on Computer
Communications, Marathon, Florida, October 1994.

The authors are with the Department of Computer Sciences, the University
of Texas, Austin, TX 78712-1188 USA.

IEEE Log Number 9415966.

With TDM, allocating the capacity of a server is constrained
by frame and slot sizes. With Virtual Clock, there is no
such constraint, i.e., any fraction of a server’s capacity can
be allocated to a traffic flow. Thus, compared to TDM,
Virtual Clock offers the flexibility to support diverse through-
put requirements of different applications, in addition to the
flexibility of statistical multiplexing.

No delay guarantee was presented for Virtual Clock in
[14], [15]. In a recent survey of rate-based service disciplines,
Virtual Clock was classified among those that do not provide a
delay guarantee [13]. Indeed, Virtual Clock by itself, without
any assumption of source control, does not provide a delay
bound in the usual sense (namely, a bound on the difference
between the departure time and arrival time of each packet).
In this paper, we introduce the concept of a delay guarantee to
a packet based upon its virtual clock value. The guarantee is
conditional and, as such, is actually more useful than a delay
bound.

In Section II, we first introduce the virtual clock of a packet
flow as a concept that is independent of the Virtual Clock (VC)
service discipline.! The model of a VC server, statistically
shared by a set of traffic flows, is presented. The meaning of an
active flow is defined. The delay guarantee provided to packets
in a flow is then presented, and formally stated as Theorem 1.
Properties of the delay guarantee are discussed in Section IIL
In Section IV, we show how to derive delay bounds from the
delay guarantee for different source specifications. In Section
V, we describe a generalization of the delay guarantee, and
present a modification of the VC algorithm. In Section VI, we
discuss related work, including both extensions of the result in
this paper and comparisons with the results of other authors.

II. DELAY GUARANTEE

Consider a number of traffic sources and a service facility.
Each source generates a sequence of packets, called a flow.
Prior to generating packets, the source of flow f requests for
a reserved rate from the facility. Let r(f) be the reserved
rate, in bits/s, allocated to flow f. Generally, different sources
negotiate for different rates depending upon their needs and
how much they are willing to pay.

For an arbitrary packet p, its length in bits is denoted by I(p),
its arrival time to the facility by A(p) (> 0), and its departure
time from the facility upon service completion by L(p). The
delay of packet p is L(p) — A(p). For all flows, the length of a
packet varies from a minimum of liiy t0 @ maximum of [,
bits. The concept of virtual clock is introduced next.

1'we denote the concept by virtual clock, and the service discipline by
Virtual Clock or VC.

1063-6692/95$04.00 © 1995 IEEE

684

Let priority(f) denote the virtual clock of flow f. It can be
implemented as a variable, which is zero initially and updated
as follows, whenever a flow f packet, say p, arrives to the
facility [15]

i(p)
r(f)’

The new value of priority(f) above is assigned to packet p as
its virtual clock value, denoted by P(p). Thus, the virtual clock
of flow fisa variable that holds the virtual clock value of the
most recent arrival of f . Note that the virtual clock values of
flow f are determined by the sequence of packet arrival times
of f, and are independent of the internal structure and design
of the service facility. (In particular, we have not yet specified
whether the facility is a single server or a network of servers).

A VC server is a priority server that uses the virtual clock
value of a packet as a priority. Specifically, whenever the
server is ready to serve a new packet, the packet in queue
with the smallest virtual clock value is selected for service.
Furthermore, the service discipline is work conservmg and
nonpreemptive.

Consider now a service facility, consisting of a VC server
and its queue, for a set F' of traffic flows. In what follows, we
use the term system to refer to the VC server and its queue.

Definition 1: A flow f is active at time ¢ if and only if the
value of priority(f) at time ¢ satisfies

priority(f) := max{priority(f), A(p)} + —=% ¢))

priority(f) > ¢ 2

Simply stated, a flow is active whenever its virtual clock
is running faster than real time. To understand the intuition
behind Definition 1, consider a hypothetical server with ca-
pacity r(f) bits/s, which is dedicated to flow f (with the same
packet arrival times and lengths-as those for flow f at the VC
server). It is easy to see that the departure time of each packet
at the hypothetical server is equal to the virtual clock value
of the same packet at the VC server. Therefore, at time ¢, the
condition prioxity(f) > ¢ holds at the VC server if and only if
the hypothetical server for flow f is busy. Note that whenever
priority(f) < t, the hypothetical server is idle, indicating that
flow f is not generating arrivals fast enough to fully utilize its
allocated rate at the VC server.

Definition 2: Let C' denote the capacity, in bits/s, of a VC
server. The server’s capacity is not exceeded at time ¢ if and
only if the following condition holds:

YorpH<c

fea(t)

&)

where a(t), a subset of F, is the set of flows that are active
at time t.

Theorem 1: If the capacity of a VC server has not been
exceeded for a non-zero duration since the start of a busy

2Without the context of a hypothetical dedicated server, Definition 1 is
not very intuitive. During a busy period of the VC server, flow f may be
active even when there is no flow f packet in the system. On the other hand,
whenever real time ¢ surpasses priority(f), flow f becomes inactive even
when there are flow f packets in the system (waiting behind packets of other
flows).

'

' IBEE/ACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 6, DECEMBER. 1995

period, then the following holds for every packet p served
during the busy period:

o
A proof of Theorem 1 is presented in the Appendix. In
practice, a network specifies a maximum size for all packets,
which can be used as ;. in (4). However, it is clear from
the proof that /,,5 can be smaller. Specifically, it-is sufficient
for Imax 0 be the size of the largest packet among those that
have been served in the busy period and do not belong to the

same flow as p. ’
Intuitively, the reason for the term /a5, /C in (4) is twofold:

L(p) < P(p) + 4)

1) for a VC server, it is possible for a packet to be scheduled =

later than another packet that has a larger virtual clock value
(lower priority), and 2) preemption is not allowed.

Our proof is by contradication. The key step is as follows:
Consider the sequence of packets served during a busy period.
In the proof, each packet is identified by its index in' the
sequence, 1, 2, ---, in order of service. (Note: We use i, 7,
and k for such indices.) For example, (i) denotes the size of
the sth packet served in the busy period. Note that the busy
period begins at A(1), arrival time of the first packet in the
sequence.

Suppose during the busy period, the kth packet served
departs at time L(%) such that

lm&x
c _
We show that there exists a time t* € [A(1), L(k — 1)]

L(k) > P(k)+

such that the server’s capacity is exceeded at ¢* for a non-

zero duration, ie., for t* < t < t* + A, where A > 0, the

following holds
dYorf)>c
fea(t)

which contradicts the hypothesis of Theorem 1 (see Appendix). -

Theorem 1 is proved without any assumption that sources
are flow-controlled or well behaved. Note that the theorem’s
hypothesis does not depend upon the actual rates of flows in
F. While the source of a flow, say f, has a reserved rate of
r(f), the source can misbehave, i.e., generate traffic at a rate
much larger than 7(f).? The delay guarantee in (4) holds even
if the flows in /' generate packets at an aggregate rate larger
than C.

The proof of Theorem 1 is valid for arbitrary arrival times
and packet lengths, Note that, over time, each flow alternatcs
between being active and inactive. The set of active flows,
a(t), a subset of F, changes dynamically with time. At any
time, the server can determine a(#) because it can determine
whether or not a flow is active by comparing its virtual clock
value with the local clock value (applying Definition 1). The
server capacity is exceeded when sum of the reserved rates
of active flows is larger than C. This condition can always
be ensured by a VC server because the allocation of reserved
rates is under the server’s control.

31t is assumed that each flow is allocated its own buffers, so that if a source
misbehaves, it will fill up its own buffers but not those ‘of other flows.

XIE AND LAM: DELAY GUARANTEE OF VIRTUAL CLOCK SERVER

A. How to Ensure Server Capacity Is Not Exceeded

There are two obvious ways for a VC server to ensure that
its capacity is not exceeded without a priori knowledge of
source.arrival characteristics. The first is by static assignment,
namely, every flow is statically assigned a reserved rate, and
requiring that sum of the reserved rates not to exceed C, for
the entire set of flows. This ensures a priori that the channel
capacity cannot be exceeded because for all time ¢

Sy rn<c

fea(t) FeF

The second is by per-session demand assignment, namely,
by requiring each source to request for a session and be
allocated a reserved rate by the server before the source can
begin generating traffic. Subsequently, upon session termina-
tion, the source stops generating traffic and the reserved rate is
deallocated. Let D(t) denote the set of sessions at time ¢ with
allocated reserved rates. The server ensures that the sum of
the reserved rates for the set of flows in D(t) does not exceed
C by refusing new requests if necessary (admission control).
Since a source generates traffic only when it is allocated a
reserved rate, a(t) is a subset of D(¢) at any time ¢. The
server ensures a priori that the channel capacity cannot be

_exceeded because for all time ¢

Yorh< Y rhH<e

fea(t) feD(t)

If statistical guarantees are acceptable [3], [13], a VC server
can exploit the fact that flows are not active all the time
and overcommit its capacity. The design of admission control
techniques to do so requires a priori knowledge of source
traffic statistics. Such techniques should be designed in the
context of a specific packet network architecture and traffic
model, and are beyond the scope of this paper.

III. PROPERTIES OF DELAY GUARANTEE

There is no assumption that sources are flow controlled
or well behaved in proving Theorem 1, because the delay
guarantee is not a bound on L(p) — A(p). A delay guarantee
of the form, L(p) < P(p) + 8 where 3 is a constant, is a
conditional guarantee. Note that the deadline for a packet’s
departure is measured from the packet’s virtual clock value,
rather than its actual arrival time. Specifically, if a packet
arrives early, its deadline is bounded from its expected arrival
time based upon the reserved rate of its flow. Thus, if a source
- generates traffic faster than its reserved rate, its packets arrive
earlier than expected and may incur large delays.

In designing a packet switch, on-time packet arrivals are
preferable to early packet arrivals. If a flow’s packets can
arrive very early, the flow is effectively more bursty, and
requires more buffer space. (Thus rewarding arrivals that are
too early with prompt service is counterproductive.) On the
other hand, packets that arrive late do not get better service
from a VC server, i.e., the 'VC service discipline is designed
to encourage sources to generate on-time arrivals.

Like the throughput guarantee of a VC server, the delay
guarantee in Theorem 1 has a desirable firewall property.

685

This property is obvious from examining the inequality in
(4), where P(p) on the right hand side, computed using
(1), is a function of the packet arrival times of p’s flow. A
misbehaving source would degrade the delay performance of
its own packets, but would not interfere with performance
guarantees offered to other flows. -

IV. DELAY BOUNDS

Consider a flow f with reserved rate r(f) . Its packets are
indexed by n = 1,2,---, in order of arrival. If its source
is known to be well behaved, either voluntarily or by source
control, such that for packet n in the flow, P(n) — A(n) is
bounded by a constant, the delay of packet » is bounded.

Thus the goal of source control is to upper bound P(n) —
A(n) for all n, that is, the extent to which the virtual
clock of flow f is allowed to run ahead of real time.
One example of source control is to ensure the interarrival
time between two consecutive packets in the flow is lower
bounded, i.e., A(n +.1) — A(n) is greater than or equal to
I(n)/r(f) for all n. By induction on n, it is easy to show that
P(n) = A(n)+ (I(n)/r(f)). Therefore, a VC server provides
the following delay bound to every packet n in the flow

L(n) < A(n) + Un) | bmax Q)

r(f) €

The above observation was first used in [7] to obtain a tight
upper bound on end-to-end delays.

With the delay guarantee in (4), different delay bounds can

be derived for different methods of source control. As another

example, if the source is (o, p) leaky bucket controlled, then
P(n) — A(n) is bounded by o /p for all n [6].

V. GENERALIZATION AND ALGORITHM MODIFICATION

Theorem 1 can be made more general by weakening its
hypothesis, specifically, by reducing the duration of time when
a flow is defined to be active. The proof of Theorem 1'in the
Appendix is for an arbitrary busy period. From the definition
of the Rate(-) function in (24), it is clear that Theorem 1 holds
as long as the server capacity is not exceeded by sum of the
reserved rates of flows that have had a packet served during
the busy period. Therefore, Definition 1 can be modified as
follows to reduce the time duration when a flow is defined to
be active.

Definition I': A flow f is active at time ¢ if and only if: i)
the system is not empty, ii) a flow f packet has arrived in the
current busy period, and iii) the value of priority(f) at time
t satisfies* :

priority (f) > t.

We can achieve the same generalization of Theorem 1,
without changing the active flow definition (Definition 1), by
resetting the virtual clock of each flow to zero at the end of
a busy period. Specifically, whenever a packet departs, if the

4Theorem 1 holds even if ii) is strengthened to the following: a flow f
packet has been served in the current busy period.

686

system becomes empty, the following reset is performed, for
all f in F:

priority (f) := 0.

Note that the above reset causes flow f to immediately
become inactive at the end of a busy period. Subsequently,
flow f becomes active again when its source generates a new
arrival: The time periods during which flow f is defined to be
active are identical to those given by Definition 1’ (without
resetting virtual clocks). Thus resetting virtual clocks does not
affect Theorem 1.

There is, however, a side effect introduced by resetting
virtual clocks at the end of busy periods. Specifically, the
VC algorithm has been modified in a nontrivial way. For a
flow that has heretofore used up more server capacity than its
reserved rate, resetting its virtual clock to zero at the end of
a busy period means that its “debt” has been forgiven. Such
a side effect was actually considered desirable in [1], where
the idea of viftual clock reset was discussed. For a slightly
different model, we described how to reset the virtual clock
of an active flow whenever there is no packet in the system
belonging to another flow [7].

VI. RELATED WORK

A. Extensions

The first application of Theorem 1 was to derive end-to-end
delay bounds for a class of packet switching networks, called
Burst Scheduling networks. In these networks, each guaranteed
flow is modeled as a sequence of bursts (each of which is a
sequence of packets). The concept of bursis was introduced to
specify two types of jitter bounds; over the delays of packets
in a burst, and over the delays of bursts in a flow. Furthermore,
a flow can be partitioned into intervals (bursts) that have
substantially different average rates. The first packet of a burst
carries information on the size and average rate of the burst.
Switches are designed to process flows efficiently in bursts.
Tight upper bounds on the end-to-end delays of packets and
bursts were derived and presented [7]-[9].

The idea of a conditional guarantee to a packet based upon
the packet’s virtual clock value was subsequently extended to
an end-to-end network path [6]. It was shown that such a delay
guarantee can be used for deriving upper bounds on end-to-
end delays for different source specifications, and for a class

of scheduling algorithms including not only Virtual Clock, but
also PGPS [10] and SCFQ [5].

B. Comparisons

The Delay-EDD service discipline was designed to offer
a delay bound to packet arrivals [3], [13]. When a flow f
packet arrives to a Delay-EDD server, it must depart within
d(f) seconds of its arrival time, where d(f) is a performance
parameter that can be specified. Note that the delay bound
offered by a VC server to flow f is coupled to the reserved
rate 7(f) ‘allocated to the flow, that is, to get-a smaller delay
bound, the source has to request for a larger reserved rate

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 6, DECEMBER 1995

(and presumably pay more for it). Delay—EDD avoids such
direct coupling. Instead, it requires a schedulability test prior
to session establishment. The result of the test, i.e., whether
or not a new session can be established depends upon the
traffic patterns of all flows sharing the server. Furthermore,
Delay-EDD requires a stronger source traffic specification,
that includes a minimum packet interarrival time in addition
to a reserved rate (average packet interarrival time).)

The packet-by-packet generalized processor sharing (PGPS)
service discipline, also known as weighted fair queueing 2],
was described and analyzed by Parekh and Gallager [10], [11].
It has been shown that a network path of VC servers has the
same delay upper bound as PGPS servers [6]. Comparing VC
and PGPS, note that if a VC server’s capacity is not fully
allocated to flows, the remaining unallocated capacity is not
shared fairly as defined in [10]. However, a VC server does
ensure that each flow receives its allocated throughput rate.
Moreover, VC is a much more efficient algorithm than PGPS,
i.e., the computation of virtual clock values for VC scheduling
is much stmpler than the computation of virtual time finishing
times for PGPS scheduling. ‘ ‘

The delay guarantee in (4) was independently discovered
and proved by Figueira and Pasquale [4] and by us [12].
We next discuss some of the differences between the two
contributions. First, one significant difference is. our active -
flow definition, missing in [4]. The condition for their delay
guarantee is the sum of the reserved rates of all flows sharing
the server does not exceed the server capacity [4]. Theorem 1
herein requires that the reserved rates of only those flows that
are active at time ¢ be summed to determine whether or not
the server capacity is exceeded at time # (see Definitions 1 and:
2). Second, our proof approach, presented in the Appendix, 18
very different from the one presented.in [4]. Third, we have
also shown that Theorem 1 holds for a modified VC algorithm
such that virtual clocks are reset to zero at the end of server
busy periods.

VII. CONCLUSIONS

We discovered and proved a delay guarantee for a VC server
with a firewall property, namely, the delay guarantee to a flow
is independent of the behavior of other flows sharing the same
server. With this property, the impact of source—controller
malfunctioning is limited, a significant advantage not found
in FIFO and other static priority service disciplines.

With both delay and throughput guarantees, and a relatively
simple implementation, Virtual Clock is an attractive algorithm
for high speed networks. We. have chosen Virtual Clock
as the basis of a packet network architecture, ‘called Burst
Scheduling, for switching multimedia traffic [7].

Our concept of an active flow in Definition 1 (also Definition
") is novel. We are investigating techniques to exploit this
concept to increase the number of flows that can share a VC
server providing statistical guarantees. The concept of a delay
guarantee based upon the virtual clock value of a packet,
rather than its actual arrival time, is also novel. It allows
the derivation of different delay bounds for different source
specifications. .

XIE AND LAM: DELAY GUARANTEE OF VIRTUAL CLOCK SERVER

APPENDIX

We first state and prove a lemma, which will be used in our
proof of Theorem 1.

Lemma 1: Let t' be the time when a flow f packet arrives
at a VC server. If f is not active at time ¢ > ¢/, where ¢ and ¢/
are in the same server busy period, then the following holds:

ZpéN(t’,t) (p)
(f)
where N(¢,t) is the set of flow f packets that arrive during

1)

[Ploof: By assumption, time ¢ is within a busy period. Since
f is not active at time ¢ and the system is not empty, from
"Definition 1, the value of priority(f) satisfies '

priority(f) < t. @)

Let po be the flow f packet that arrives at time ¢'. From the
Virtual Clock algorithm in (1), we have

(o)

r(f)
Applying (1) repeatedly, we have, at time ¢, the value of
priority(f) satisfies

(t—t) > ®

P(po) > t' + ®)

ZpEN(t’,t) I(p)

priority(f) > ¢ + r(f)

®

Combining (7) and (9), we have
ZpEN(t’,t) U(p)

t>t+ () (10)
Therefore, (6) holds
’ ZpeN(t’ t) (p)
t—t) > ; .
¢=92 700 .

A. Proof of Theorem 1

Consider the sequence of packets served during a busy
period. Each packet is identified by its index in the sequence,
1, 2, ---, in order of service. (Notation: We use 4, j, and k
for such indices.) For example, /(7) denotes the size of the ith
packet served in the busy period. Note that the busy period
begins at A(1), arrival time of the first packet in the sequence.

We will carry out a proof by contradiction. Specifically,
we assume that during the busy period, the kth packet served
departs at time L(k) such that

L(k) > P(k) + l—"&,—" (1)

Then we will show, given (11), there exists a time t* €
[A(1), L(k — 1)] such that the server’s capacity is exceeded at
t* for a non-zero duration, i.e., for t* < t < t* + A, where
A >0, the following holds:

Yo >c (12)
fea(t)
From (11), we have
P(k) < L(k) - e (13)

C

687

M
Y () - (ty=s,)]
m=1

=)
3 _
o r=
8 (8= 5y) 7
2
£
]
g
(f2) ;) r(fm-1)
) :)
iy) r(fm
‘ t
»
Smin=51 52 1153 Sg 382 S5 I Sy tmax=tM
system time (seconds)
Fig. 1. Illustration for Theorem 1.

There are two possible cases (that are mutually exclusive and
collectively exhaustive):
Case I: There exists j, 1 < j < k, such that for ¢ = j,- -+, k

P() < L(k) — tmex

2 (14)
. lmax
P(j—1) 2 L(k) - 2. (15)

Note that packet j — 1 has a larger virtual clock value than
packets in {j,---, k} but is served earlier.’

When a packet arrives; its flow is either already active
or becomes active at the instant of the packet’s arrival (by
Definition 1). Thus, every packet arrives in a time interval
during which its flow is continuously active, to be called an
active period. Let M denote the number of ‘active periods
during which packets in {j,---,k} arrive, where 1 < M <
k—j+1. These active periods are indexed by m = 1,2,---, M.
For active period m in this set, define the following:

Im Active period m is for flow fp,.
. Time instant when active period m ends.
tm tm = min{tl,, L(k) — lmax/C}.

N, Setof f,, packetsin {j,---,k} that arrive during
active period m.
Sm Earliest arrival time among packets in Np,.

The active periods are illustrated in Fig. 1. Note that two or
more active periods in the set may be for the same flow (that
is, the f,’s are not necessarily distinct). Also, by definition,
N1, Na, -, Ny constitute a partition on {j,---,k}.

Because of (14), the arrival time of every packet in
{j,-+-,k} is less than L(k) — lnax/C. Hence, every packet
in {4,--+,k} arriving during active period m has an arrival
time less than ¢,,. o

For every active period m, one of the following two cases
applies:

¢ tm < L(k) — lmax/C: Recall that N(sy,,t,) denotes

the number of flow f, packets that arrive during the

5 Also, from (13) and (15), note that P(k) < P(j — 1) which implies

packets j — 1 and k do not belong to the same flow.

688

time interval [s,,,%,,]. Noting that N, C N (sm, m)s
and applying Lemma 1, we have

. ;
(tm . Sm) > Zpe]\;(g;;;,) (p) > Zp:(];z)(p) (16)
> Up) < r(fn)(bm = s1n). a7
PENm |
* tm = L(k) — lmax/C" Let last,, be the packet in N,,, that

- is served last. Apply the Virtual Clock algorithm in (1)
repeatedly, and we have

I(p)
P(lasty) > sm + —. 18)
pg\f:m T(f'm)
From (14), we have
P(lasty,) < L(k) — o = tm. (19)
Combining (18) and (19), we have
ZpEN l(p> .
tm m o L 20
o T) ¢
D) < 7(fm)(tm — Sm)- @D
PENm
‘ Define
Sf;lin = minj<m<rmr{sm} (22)
, tmax = maXISmSM{tm}‘ (23)

Next let us consider Fig. 1. In the figure, without loss of
generality, we have assumed Spyin = 81 and tpax = i

Let I(z) be a function that has a value of one if condition
x is true, and zero, otherwise.

Define
M
Rate(t) = Y [I(sm <t < tw)r(fm)] (24)
m=1)
7= Znﬁle[qa(fm)(tm - Sm)]) 25

tmax ~ Smin

In Fig. 1, each possible pattern of M active periods, repre-
sented by the Rate(-) function, is specified by the sequences,
“Sisfas oo fars 81,82, 80 and ty,0,---,ar, such that
Sm < tm forall m =1,2,---, M. For each pattern, consider
a rectangle of width ¢y — Spmin and height 7. Compare it
to Rate(t) over the interval [Smin,%#max]. Note that the area
of the rectangle is equal to the area under Rate(t) over the
interval [Smin,tmax]. Thus if Rate(t). is less than 7 over a

non-zero duration, then Rate(¢) must be larger than 7 over a’

non-zero duration. It is easy to see that forall M , 1< M <
k —j+ 1, and all patterns of M active periods, there exist
t* € [Smin, tmax] and A > 0, such that for t* <t < #* + A

(26)
From (17), (21) and (26), we have for t* <t < t* + A

s Spen, 1)

tma.x -

Rate(t) > 7.

Rate(t) > @7)

Smin

TEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 6, DECEMBER 1995

From the definition of ¢,,, we have

l
< . max - 2.
tmax < L(K) C (28)
Furthermore, the following holds for any packetin {j,-- -, k}
’ -1
AG) > L(j—1) - —(3—(7—) (29)

Otherwise some packet in {7, - - -, k} would have been selected
for service before packet j — 1, becanse P(j — 1) > P(i) for

1= 4,---,k from (14) and (15). Therefore we have
) — 1
smin > L(j —1) = =1 - (30)
. . C
Combining (28) and (30), we have® .
lmax . i -1)
tmax — Smin < L(k) C (L<-7 1) C)(31)
) lonax — (5 — 1
= 1(k) - 1(j~1) - ==L)
< L(k) - L(j - 1). , (33)
From (27) and (33), we have for t* <t < t* + A
- l
Rate(t) > Zm=1 2pen., 1(P) (34)

L(k) =

By their definition, Ny, N, - -,
{4,--+,k}, therefore

L{j—-1)
Ny constitute a partition on

M
{5, k) = U Ny (35)
v
DU =" > U (36)
p=j m=1pEN,,
Cormbining (34) and (36), we have for t* <t < t* + A
Z;:j U(p) :
Since
k 1 4
1) - 1 - 1) = 2210 (3%)
we have from (37) that for t* < t < 7+ A .
Rate(t) > C. (39)

To complete our proof of Theorem 1, the following case
remains to be considered.

Case II: There isno j, 1 < j < k, such that fors = j,- -+, k,
(14) and (15) are satisfied. That is, for ¢ = 1,- -,k ;
. Imax k

Py < L(k) — === (40)

The proof is similar to Case I, but (15) in the above pi‘odf
does not apply here. Equations (16)—(28) remain. the same.
Equations (29) and (30) become

Smin = A(1) 41

®Note that Theorem 1 holds if lmax > I(j — 1), that is sufficient for the
inequality in (33).

XIE AND LAM: DELAY GUARANTEE OF VIRTUAL CLOCK SERVER

where A(1) is the start of the busy period. Equations (31)—(33)
become

lma.x
tmax — Smin < L(k) - T - (1) 42)
< L(k) — A(1). (43)
Equations (34)-(39) become, for t* < ¢ < {* + A
M e, 1)
Rate(t) > L(k) — A(1) (44)
k
.1
_ 2l 45)
L(k) - AQ1)
Thus, (12) holds for Case II as well as for Case 1. O
REFERENCES

[1} G.M. Bernstein, “Reserved bandwidth and reservationless traffic in rate
allocating servers,” Comput. Commun. Rev., pp. 6-24, July 1993.

[2]1 A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queuing algorithm,” in Proc. ACM SIGCOMM, 1989, pp. 3-12.

[3]1 D. Ferrari and D. Verma, “A scheme for real-time channel establishment
in wide-area networks,” IEEE J. Select. Areas Commun., pp. 368-379,
Apr. 1990.

[4] N.R. Figueira and J. Pasquale, “An upper bound on delay for the virtual
clock service discipline,” IEEE/ACM Trans. Networking, vol. 3 no. 4,
Aug. 1995.

[5] S. J. Golestani, “A self-clocked fair queueing scheme for high speed
applications,” in Proc. IEEE INFOCOM, 1994.

[6] P. Goyal, S. S. Lam, and H. M. Vin, “Determining end-to-end delay
bounds in heterogeneous networks,” in Proc. Workshop Network and
OS Support for Digital Audio Video, April 1995.

[7] S. S. Lam and G. G. Xie, “Burst Scheduling: architecture and algo-
rithm for switching packet video,” Department of Computer Sciences,
University of Texas, Austin, TX, Technical Rep. TR-94-20, July 1994.
Abbreviated version in Proc. IEEE INFOCOM, 1995.

, “Burst scheduling networks: flow specification and performance

guarantees,” in Proc. Workshop on Network and OS Support for Digital

Audio Video, April 1995.

, “Group priority scheduling,” Department of Computer Sci-

ences, University of Texas at Austin, Tech.. rep. TR-95-28, 1995;

available http://www.cs.utexas.edu/users/lam/NRL. An

abbreviated version to appear in Proc. IEEE INFOCOM °96.

A. K. Parekh and R. G. Gallager, “A generialized processor sharing

approach to flow control in integrated services networks: the single node

case,” IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 344-357, June

1993.

[8]

91

[10]

[11]

, “A generialized processor sharing approach to flow control in
integrated services networks: the multiple node case,” IEEE/ACM Trans.
Networking, vol. 2, no. 2, pp. 137-150, Apr. 1994,

689

[12] G. G. Xie and S. S. Lam, “Delay guarantee of virtual clock server,”
Department of Computer Sciences, University of Texas, Austin, TX,
Technical Report TR-94-24, 1994, presented at 9th IEEE Workshop on
Computer Communications, October 1994.

H. Zhang and S. Keshav, “Comparison of rated-based service disci-
plines,” in Proc. ACM SIGCOMM, 1991, pp. 113-121.

L. Zhang, “A new architecture for packet-switched network protocols,”
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA,
1989.)

[13]
[14]

[15]

, “Virtual clock: a new traffic control algorithm for packet
switching networks,” in Proc. ACM SIGCOMM, Aug. 1990, pp. 19-29.

Geoffrey G. Xie received the B.S. degree in com-
puter science from Fudan University, Shanghai,
China, in 1986. He received the M.S. degree in
computer science and the M.A. degree in mathe-
matics from Bowling Green State University, Ohio,
in 1988. He has been working toward the Ph.D.
degree in computer science at the University of
Texas, Austin, TX, since 1988 and holds an Intel
Graduate Fellowship.

From 1991 to 1993, he worked as a full-time
project engineer in Schlumberger Austin Systems
Center. His research interests are computer networking, multi-media commu-
nications, and distributed computing.

Simon S. Lam (S’ 71-M’74-SM’80-F’85) received
the BSEE degree, with Distinction, from Washing-
ton State University in 1969, and the M.S. and
Ph.D. degrees in engineering from the University
of Califonia, Los Angeles, CA, in 1970 and 1974,
respectively. .

From 1971 to 1974, he was a postgraduate re-
search engineer at the ARPA Network Measurement
Center (UCLA). From 1974 to 1977, he was a
research staff member at the IBM T. J. Watson Re-
search Center, Yorktown Heights, NY. Since 1977,
he has been on the faculty of the University of Texas at Austin, where he
is a Professor of Computer Sciences. He holds two anonymously endowed
professorships, and served as department chair from 1992 to 1994. His
research interests are in network protocol design, performance analysis, formal
verification, network security, and multi-media.)

Dr. Lam’s paper on packet switching in a multi-access broadcast chan-
nel, derived from his doctoral dissertation, received the 1975 Leonard G.
Abraham Prize Paper Award from the IEEE Communications Society. He
was elected an IEEE Fellow in 1985 and served on the editorial boards
of IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, IEEE TRANSACTIONS
oN COMMUNICATIONS, PERFORMANCE EVALUATION, and PROCEEDINGS OF THE
IEEE. He organized and was program chair of the first ACM SIGCOMM
Symposium, held at the University of Texas, Austin, in 1983. He presently
serves as Editor-in-Chief of the IEEE/ACM TRANSACTIONS ON NETWORKING.

